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Methods for the 2020s

Advances in methodology are being driven by advances in
computing and other technologies.
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it also looks like I started to plateau in my improvement just in
time for the challenge.
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This gives us more options than ever, so what do you need to know?
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What can methods do for us?

Strong experimental design and analyses, allow us to:

« Makes inferences about causal relationships
 Learn about how, why, and when an effect may occur
o Test theories about outcomes and processes

Leverage the competitive advantages of your research method(s).

Design and analysis issues can keep us from being able to
capitalize on our competitive advantage.

Inferences from these experiments may be incorrect or
incomplete.
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What can't analysis do for us?

 Correct for poor experimental design

« Allow you to draw strong casual inference from observational data
o Tell us much about magnitudes

« Get your paper accepted (but it can help it not get rejected)

« Make you more popular at parties

 Show you "truth" in the world

« Make your variables of interest interesting (esp. jointly interesting)
» Give you an interesting accounting research question*

* with some small exceptions (e.g., audit sampling, methods papers)
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You make the call!

H1: The difference in investors' willingness to invest under
low versus high levels of stress will be greater when the
humidity is high versus when it is low.

/
ANOVA ‘
Stress p =0.56 N Low Stress
Humidit — 0.34 p=0.30
umidity p=0. - p=0.01
A
Stress x Humidity p =021 < 5
High Stress
Tests of follow-up simple effects: N
Low High
The simple effect of stress given low humidity is not
significant (p = 0.30). The simple effect of stress given Humidity

high humidity is highly significant (p = 0.01).

Is H1 supported?




Methods: Design and Analysis

Predictive Validity Framework (a.k.a. Libby Boxes)

"Link 4 assesses the relations between the operational independent
and dependent variables."

Libby, Bloomfield, and Nelson (2002)

Link 1
Conceptual Construct {  [ee—  Construct ¥

| \ \ | Using
Stats!

Operational Link 4 Operational
Operational Definition of |[————  Definition of
X Y
ILinh 5
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The missing link...

Link 4 is Statistical Conclusion Validity (SCV).

Statistical Conclusion Validity (SCV) requires that:

« the statistical analysis chosen matches the design employed; and
o the analysis is applied in a way that does not distort the expected
probability of Type I or Type II error.

Without adequate SCV, we might not be able to trust our results.

This is a really big deal, but how do we know
whether we've met these requirements?

Shadish, Cook, and Campbell (2002)
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Read the plan and instructions!

First, know your data.
« What am I trying to show with these data?
« How is my data distributed? Is this as expected?
Do I have outliers, missing data, or other issues?
o What kind of variables do I have? (fixed vs. random, ordinal, etc.)

What do I need to know about the technique?
« What are the test's assumptions?
« What happens if those assumptions are violated?
 From a high level, how does the technique work?
« How is the test conducted in my software package? Defaults?
« What does the test tell me?
o Are there other tests that I should consider?
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Must know: Core Analyses

« ANOVA
« Regression

 Simple Effects Tests
« Simple comparisons between cells
 Basic Contrast Testing

o Descriptive Statistics / Data visualization

« Common non-parametric tests (e.g., Mann-Whitney U, x )

Plus: Any technique used in a paper authored or co-authored
by you. This goes double for your JMP.
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Don't be this person - #2

Cite a (methods) paper, without reading (and understanding)
the cited paper.

Example:

1. You read "Paper 1."
2. Paper 1 cites "Methods Paper A."

3. You use the same technique as "Paper 1", so you cite
"Methods Paper A" without reading it.

This isn't a good look for you and could be
interpreted as a "signal" by the reviewer.
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Should know: Common Analyses

« ANOVA with random effects (e.g., within-SS)
« ANCOVA

« MANOVA

Non-linear regression techniques

Custom Contrast Testing

Factor Analysis (EFA, CFA) These are
Principal Components Analysis (PCA) different!
Rotations (e.g. varimax vs. oblimax)

Basic Structural Equation Modeling (SEM)
« Basic Simultaneous Regression (PROCESS)
« Basic Bayesian null effect testing
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Good to know: Other Topics

These are good to know if they are used in your topical area

(or for generally being a good consumer of research).

e Conditional Indirect Effects (i.e., Advanced PROCESS)
e Analysis of incomplete and other complex designs

« Mixed design analysis (both random and fixed effects)
 Hierarchical design analysis (HLM and nested analysis)
« Survey Analysis Techniques (e.g., stratification)

o Archival techniques:

» Fixed Effects and Standard Error Structures
= Propensity Score Matching
= Ditf-and-Diff designs

 Bayesian data analysis
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Remember!

As amazing as learning stats is, you are (probably) not a
statistician.

You're institution will likely give you credit for:

e Publishing Accounting research

e Teaching well

« Service to your department, school, and field
» Being a good colleague / not being a jerk

You are less likely to get credit for a cutting-edge technique or a
really cool analysis - so try not to fall down a rabbit hole.

(I'm still working on taking this advice...)
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You have conducted a 2 x 2 between-subjects experiment
with the following IVs and DV.

Description Levels
Factor 1 Inspection Likelihood? High, Low
Factor 2 Partner based out of your office? Yes, No
Dependent Variable Sought Additional Evidence? Yes, No

What analysis should you use to test for main and interaction effects?
a. ANOVA

b. Linear Regression

c. Logistic Regression
d. Structural Equation Modeling

e. Other
Gomila (2020 Journal of Exp. Psych: General)
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Testing Process Theories
(Asay, Guggenmos, Kadous, Koonce, and Libby 2019 WP)

» Process testing has become nearly ubiquitous in
experimental accounting research.

« We argue that process evidence is not always necessary
to make a significant contribution to the accounting
literature, but can add value to a paper.

« The ability of a process analysis to provide useful
evidence rests on the researchers' ability to conduct the
analysis in a way that minimizes the threats to validity
that are common to the method used.
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What is Process Analysis?

Process analyses shed light on the mechanisms linking
cause and effect and the circumstances that alter the
direction and magnitude of those links.

« When does this effect occur or not occur?
« How does this effect "work"?
« What conditions exacerbate or mitigate the effect?

This information is often interesting or helpful,

but may or may not be a study's main research question.
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Providing Process Evidence

There are many ways to provide process evidence.
(if it's needed!)

« Moderation-of-Process designs

= Manipulated Moderators
» Measured Moderators

« Mediation-by-Measurement designs

» Less Obtrusive Measurement
» More Obtrusive Measurement
= Coded Responses

o Triangulation

= Multiple experiments (within or across papers)
= Multiple methods (within or across papers)
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Providing Process Evidence

Our paper does not say that you:

« need process evidence for your paper.

 need to use multiple experiments.

« need to use multiple methods.

e should't use PEQs for mediation.

» should always choose moderation over mediation.
» should use SEM instead of PROCESS.

» should use PROCESS instead of SEM.
« don't need process evidence for your paper.
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Data visualization isn't optional

"...make both calculations and graphs. Both sorts of output should be
studied; each will contribute to understanding.”

Anscombe (1973)
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Be thankful...

If we need a short sugge-stion of what exploratory
data analysis is, I would suggest that

1. It is an attitude, AND
2. A flexibility, AND
3. Some graph paper (or transparencies, or both).

No catalog of techniques can convey a willingness to
look for what can be seen, whether or not anticipated.
Yet this is at the heart of exploratory data analysis.
The graph paper—and transparencies—are there, not
as a technique, but rather as a recognition that the

picture-examining eye is the best finder we have of the
wholly unanticipated.

Tukey (1980 American Statistician)
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Data analysis is hard.

« Best practices change frequently.

« Innovations in experimental analysis are not frequently published
in accounting journals.

* You often get little credit for it being right, but lose a lot of credit if
it is wrong.
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Closing thoughts.

Data analysis is hard.

« Best practices change frequently.

« Innovations in experimental analysis are not frequently published
in accounting journals.

* You often get little credit for it being right, but lose a lot of credit if
it is wrong.

Data analysis has to be right.

« Good analysis always starts with good design.
o If analysis isn't sound, we can't trust the results.
« When experimental methods papers are published in accounting,

read them closely and make sure you understand.
o Ask for help!

10 .



But most importantly,
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Don't be sketchy.

I'M NOT SAYING THAT'S TRYING TO
BE SKETCHY
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BUT THAT'S SKETGHY
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Johnson

Cornell
SC Johnson College of Business

Thank you.

And good luck with your papers!

Questions?




